
REPORT DOCUMENTATION PAG!
Form Approved

OM3 No. 0704-0183

TJth-?'-:n^ ir.2 . .ird CCTOietirq .ir.c ■'■?■. ->V.-no '. ij common.*^ r?cd*d:r; esnm.r.e Dr 3ry Otrer dsceci Of th;s

? t: 0.0 p r n .^

I AUTOMATIC TOOLS FOR DEVELOPING FINE-GRAINED
: SIGNAL PROCESSING PROGRAMS ON MULTICOMPUTERS

I 3VYNAL/6I JAN "92"TO 1U"DEC 94

i 5. AUTHORJS)

i PROFESSOR O'HALLARON
l 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

j SCHOOL OF COMPUTER SCIENCE
1 CARNEGIE MELLON UNIVERSITY
I 5000 FORBES AVENUE
j PITTSBURGH, PA 15213

2304/FS
F49620-92-J-0131

8. PERFORMING ORGANIZATION
REPORT NUMBER

ÄFOSR.TR. 9 fi - 0 3 0 4

j 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
110 DUNCAN AVE, SUTE B115
BOLLING AFB DC 20332-0001

t; •. ;j f; ;•

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

F49620-92-J-0131

H ci ior>i c A>»r air A o v unTtj

^%JUN 2 1, 19951 II

F

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

i3. ABSiSACT (Maximurr, 200 words)

During the course of this contract we developed the first system that integrates
task and data parallelism in a uniform compiler framework. The compiler, which is
called Fx, translates a dialect of High Performance Fortran into parallel code that
runs on distributed memory computer systems such as the Intel Paragon, the Lintel
iWarp, the IBM SP/2, and networks of workstations.
We demonstrated the effectiveness of our technique on a wide variety of
applications, including spotlight synthetic aperture radar (SAR), multidimensional
fast Fourier transform (FFT), narrowband tracking, radar, air quality modeling,
earthquake ground motion modeling, and multibase stereo vision.
The system is in daily use at Carnegie Mellon. The Carnegie Mellon vision group
uses the Fx compiler to develop their codes for the Intel Paragon. The Mechanical
Engineering air quality modeling group at Carnegie Mellon is using Fx to develop
their airshed model on the Paragon. A siesmologist at the University of Southern
California used the Fx system to develop an application based on the method of
boundary elements for predicting ground motion during strong earthquakes.

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

! UNCLASSIFIED

SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAR(SAME AS REPORT)

NSiN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANS; Sra Z39-18
298-102

1994 Final Report
AFOSR Contract F49620-92-J-0131

Acceaion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By__
Distribution/

Availability Codes

Dist

A-l

Avail and/or
Special

Program Manager:
Maj. David Luginbuhl

Air Force Office of Scientific Research
Boiling Air Force Base

Bldg 40, Suite B115
Washington, DC 20332

by:
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

email: ohallaron@cs.cmu.edu
phone: (412)268-8199

fax: (412)681-5739

1 Mar 1995

19950616 062

Principal investigator: David R. O'Hallaron
Co-Principal investigator: H. T. Kung

Duration: 1 Jan 1992 to 31 Dec 1994

1 Executive Summary

During the course of this contract we developed the first system that integrates task and data parallelism in a
uniform compiler framework [15]. The compiler, which is called Fx, translates a dialect of High Performance
Fortran into parallel code that runs on distributed memory computer systems such as the Intel Paragon, the
Intel iWarp, the IBM SP/2, and networks of workstations.

We demonstrated the effectiveness of our technique on a wide variety of applications, including spotlight
synthetic aperture radar (SAR), multidimensional fast Fourier transform (FFT), narrowband tracking radar,
air quality modeling, earthquake ground motion modeling, and multibaseline stereo vision.

The system is in daily use at Carnegie Mellon. The Carnegie Mellon vision group uses the Fx compiler
to develop their codes for the Intel Paragon. The Mechanical Engineering air quality modeling group at
Carnegie Mellon is using Fx to develop their airshed model on the Paragon. A seismologist at the University
of Southern California used the Fx system to develop an application based on the method of boundary
elements for predicting ground motion during strong earthquakes.

The remainder of this report describes the Fx system and our experience with Fx application programs.

2 The Fx compiler

Compilation of programs for parallel computers has received considerable attention for many years. Several
parallelizing compilers have been developed for data parallel programs, including Fortran D [28] and Vienna
Fortran [9]. High Performance Fortran [16] (HPF) has emerged as a standard dialect of Fortran for data
parallel computing. The core of HPF contains a set of extensions to describe data mappings and parallel
loops. These allow programmers to write and compile data parallel programs for a variety of architectures.
However, in its current form, HPF does not address task parallelism or heterogeneous computing adequately.
Applications that require different processor nodes to execute different programs, possibly on different data
sets, cannot be programmed effectively in HPF. There is growing interest in the idea of exploiting both task
and data parallelism [1, 7, 8, 10, 11, 12, 14, 27]. There are a number of practical reasons for this interest:

Limited scalability: Many applications, especially in the domains of image and signal processing, do not
scale well when using data parallelism, because data set sizes are limited by physical constraints, or because
they have a high communication overhead. For example, in multibaseline stereo [29], the main data set is
an image whose size is determined by the camera interface. Task parallelism makes it possible to execute
individual computations on a subset of nodes and thus improves performance, despite limited scalability.

Real-time requirements: Many real-time applications (e.g. in robot control) have strict latency and
throughput requirements. Task parallelism allows the programmer to partition resources (including processor
nodes) explicitly among the application modules to meet such requirements. By supporting both task and
data parallelism in a single framework, the user can tailor the mapping of an application to a particular
performance goal.

Multidisciplinary applications: Task parallelism can be used to effectively manage heterogeneity in appli-
cations and execution environments. There is an increased interest in parallel multidisciplinary applications
where different modules represent different scientific disciplines and may be implemented for different par-
allel machines. For example, the airshed model [17, 18] represents a "grand challenge" application that
characterizes the formation of air pollution as the interaction between wind and reactions among various
chemical species. It is natural to model such interactions using task parallelism; e.g. one module (or task)
models the effect of the wind, and a different module models the chemical reactions. Further, the use of
task parallelism is necessary if different modules are designed to execute on different types of parallel or
sequential machines.

There are many ways in which task and data parallelism can be supported together in a programming
environment. A fundamental design decision is whether the programmer has to write programs with explicit
communication, or if the responsibility of communication generation is delegated to the compiler. One of
the benefits provided by data parallel languages like HPF is that they liberate the programmer from dealing
with the details of communication, which is a cumbersome and error prone task. If task parallelism is to
find acceptance, writing task parallel programs must be no harder than writing data parallel programs,
and therefore, in our design, all communication operations are generated by the compiler. The user writes

programs for a common data space, and the compiler maps the data objects to the (possibly disjoint)
address spaces of the nodes of the parallel system. This division of responsibility also allows communication
optimizations by the compiler. Other fundamental design decisions include whether task management should
be static or dynamic, and strategies for processor allocation and load balancing.

We have designed and implemented task parallelism as directives in a data parallel language based on
HPF. This prototype compiler is called Fx [27, 24].1 Our objectives are to develop a system that produces
efficient code, and to use this system to develop applications that need task and data parallelism. The
current targets for this compiler are an iWarp parallel machine, networks of workstations running PVM,
and the Cray T3D. The compiler has been used to develop a variety of task and data parallel applications,
including synthetic aperture radar, narrowband tracking radar, and multibaseline stereo [13, 26].

There are obvious practical advantages of extending HPF for task parallelism instead of inventing a new
language. Existing sequential and data parallel libraries can be used, it is easier to convert existing programs
to task and data parallel programs, and it is easier to gain user acceptance. Finally, it is important to be
able to compile task and data parallel programs efficiently using existing compiler technology. In particular,
we allow several directives to help the compiler in generating efficient code, even though some directives may
become obsolete as more sophisticated compilers become available.

2.1 Requirements for efficient parallelization

Many applications must exploit both task and data parallelism for efficient execution on massively parallel
programs. Consider the following example application kernel (called FFT-Hist) from signal and image
processing. Input is a sequence of m 512 x 512 complex arrays from a sensor (e.g., a camera). For each
of the m input arrays, we perform a 2D fast Fourier transform (FFT), followed by some global statistical
analysis of the result, including constructing a histogram. The 2D FFT consists of a ID FFT on each column
of the array, followed by a ID FFT on each row. The main loop nest in FFT-Hist is shown in Figure 1.

Input is a sequence ofm arrays Output is a sequence of m arrays
AVA2 Ajreadbycolffts) AVAT ..., Abritten by hist)

do i s 1,1
call colffts(A)
call rowffts(A)

call hist(A)

enddo

\ /

coiffts rowffts hist

Figure 1: FFT-Hist example program and task graph

For each iteration of the loop, the coiffts function inputs the array A and performs ID FFTs on the
columns, the rowffts function performs ID FFTs on the rows, and the hist function analyzes and outputs
the result. This is an interesting program because it represents the structure of a large class of applications
in image and signal processing, and because it illustrates some important tradeoffs between different styles
of mapping programs onto parallel systems. We use this simple program as a running example throughout
the rest of the section.

Suppose we have at our disposal parallel versions of the three functions in Figure 1 so that each function
can run on 1 or more nodes. A compiler or user has to make a decision on how many nodes to assign to each
function. Figure 2 depicts the speedup obtainable for these three functions, as a function of the number of
nodes. The coiffts function performs an independent ID FFT on each column of A. So if we assign blocks
of columns to nodes, we can run all of the nodes independently, and the function scales almost linearly up

1 There are two explanation« for this name. On one hand, the "x" emphasizes that the language and directives may still
undergo further development, and the "F" emphasizes how irrelevant details of the base language (Fortran) are. On the other
hand, efficient translation of programs for parallel machines often brings to mind the use of special effects.

to 512 nodes. The rowff ts function behaves in the same way if the array is distributed row-wise among
the nodes. The key point is that neither coif Its nor rosfft« generates any communication, and thus each
scales well. On the other hand, the hist function contains significant communication and thus does not
scale well.

Speedup

Number of nodes

Figure 2: Speedup curves for the functions in FFT-Hist.

Given that only two out of the three functions scale well, how do we go about parallelizing the loop nest
in Figure 1? One approach is a purely data parallel mapping: use all of the nodes to execute colffts, then
use all of the nodes to execute rosf f ts, then use all of the nodes to execute hist, and so on. As the number
of nodes increases, this purely data parallel approach works well for the coif ft s and rowf f ts functions but
makes inefficient use of the nodes during the hist routine because hist does not scale well.

To achieve good efficiency for functions like the hist function, we must allocate a small number of nodes
to it. So for large parallel systems, how do we use up the remaining nodes? The answer is to exploit a mix
of task and data parallelism.

2.2 User model for task and data parallelism

The input language for Fx is based on HPF: The array statments of Fortran 90 augmented with data
layout statements and a FORALL-like parallel loop construct [31]. These constructs are described briefly in
Section 2.2.1.

In the Fx model, a task corresponds to the execution of a call to a task-subroutine. A task-subroutine
is a data parallel subroutine, with well-defined side-effects, contained inside a special code section in the
main program called a parallel section. The only allowable side-effect of calling a task-subroutine is that the
values of its actual parameters might change. For each lexical call to a task-subroutine, the programmer
provides (1) hints that indicate if an actual parameter is read and/or modified by the task subroutine, and
(2) directives that control the mapping of the task-subroutines onto nodes. These hints and directives are
described later in Section 2.2.2.

The execution model for an Fx program is as follows: The program begins execution as a single data
parallel task running on all nodes. When the flow of control reaches a parallel section, the tasks specified
by calls to task-subroutines inside the parallel sections are executed subject to data dependence constraints,
i.e., each task waits for its input, executes, sends its output, and terminates. Parallelism is obtained by
executing different tasks on different sets of nodes. When all tasks have terminated, the execution of the
parallel section is over, and the program continues execution as a single data parallel task.

Figure 3 depicts some possible executions of FFT-Hist for m = 4 iterations on a parallel system. Details
of the organization of the parallel system do not matter at this time. For each node, this figure indicates
what function of FFT-Hist is executed on this node at a given time. In Figure 3(a), the main program starts
on all of the nodes. Once inside the parallel section, the task-subroutines execute one after the other; each
task-subroutine runs on all of the nodes. After 4 iterations of the loop, the main program resumes executing
on all the nodes. Another possibility is shown in Figure 3(b), where each task-subroutine runs on a disjoint
set of nodes, and thus the computation is pipelined. Notice that the hist function takes about the same

TIME

N
O
D
E
S

III ;?S S3&¥:

m §1:1 ä&& :*£*§£ m
a ■:-:-:-x-i- a
I ;^i 1
n n

N
O
D
E
S

N
O
D
E
S

(a)

(b)

(c)

Figure 3: Execution of FFT-Hist on a parallel system

time as in the mapping of Figure 3(a) - using more nodes did not shorten execution time in Figure 3(b).
Yet another option is depicted in Figure 3(c).

Since the data relationship of the calling program to the task-subroutines is well denned, the compiler
can map the tasks on different sets of nodes, and generate communication to maintain data consistency.
For our application domains, the runtime behavior of tasks can be accurately predicted before execution, so
issues like load balancing and task migration are currently not of concern to our compiler. Load balancing
can be influenced by the user's choice of data layout, using the HPF layout directives.

The basic idea governing the role of directives is that the results obtained from parallel execution must
be consistent with those obtained from sequential execution. The main characteristics of the user model can
then be summarized as follows: (1) There are no new language constructs, only compiler directives in the
form of comments. (2) There is a common name space for shared data. (3) Tasks are represented as calls
to data parallel subroutines with well-defined side-effects. (4) Communication between tasks is generated
and managed by the compiler. (5) Sequential consistency, determinism, and freedom from deadlock are
guaranteed by the compiler.

2.2.1 Data parallel constructs

Data parallelism is expressed with array statements (as in HPF) and a FORALL-like parallel loop called
the PDO [31]. Fx supports BLOCK, CYCLIC, and BLOCK-CYCLIC distributions in an arbitrary number
of array dimensions. Consider the following example:

c$ template t(n)
c$ align A(i,j) •with t(i)
c$ align B(i,j) with t(j)
c$ distribute t(CYCLIC)

pdo i=l,n
i(i,:) = A(i,:) + B(:.i)

enddo

This example uses template, align, and distribute directives to distribute the rows of array A and the
columns of array B cyclically across the parallel system. In the example above, the ith loop iteration uses an
array statement to add the jth column of B to the ith row of A. Moreover, each loop iteration is independent
and can run in parallel with the other loop iterations.

2.2.2 Task parallel directives

We have not introduced any new language features and rely entirely on compiler directives for expressing
task parallelism. To simplify the implementation, the current version of Fx relies on the user to identify the
side effects of the task-subroutines and to specify them. Directives are also used to guide the compiler in
making performance related decisions like program mapping. In this section, we describe the directives and
hints that are used to express task parallelism and illustrate their use for the FFT-Hist example.

2.2.3 Parallel sections

Calls to task-subroutines are permitted only in special code regions called parallel sections, denoted by a
begin parallel/end parallel pair. For example, the parallel section for the FFT-Hist example has the
following form:

c$ begin parallel
do i = 1,B

call colffts(A)
c$ input/output and mapping directives

call row«ts(A)
c$ input/output and mapping directives

call hist(A)
c$ input/output and mapping directives

enddo
c$ end parallel

The code inside a parallel section can only contain loops and subroutine calls. These restrictions are necessary
to make it possible to manage shared data and shared resources (including nodes) efficiently at compile time.

A parallel section corresponds to a mapping of task-subroutines to nodes. The corresponding mapping
outside the parallel section is a simple data parallel mapping, where every routine is mapped to all nodes.
The current implementation does not allow nesting of parallel sections.

2.2.4 Input/output directives

The user includes input and output hints to define the side-effects of a task-subroutine, i.e., the data space
that the subroutine accesses and modifies. Every variable whose value at the call site may potentially be used
by the called subroutine must be added to the input parameter list of the task-subroutine. Similarly, every

variable whose value may be modified by the called subroutine must be included in the output parameter
list. A variable in the input or output parameter list can be a scalar, an array, or an array section. An array
section must be a legal Fortran 90 array section, with the additional restriction that all the bounds and step
sizes must be constant.

For example, the input and output directives for the call to rowfft» have the form:

call rowfft«(A)
c$ input (A), output (A)
c$ mapping directives

This tells the compiler the subroutine rowffts can potentially use values of, and write to the parameter
array A. As another example, the input and output directives for the the call to coif its has the form:

call coifIts(A)
c$ output (A)
c$ mapping directive»

This tells the compiler that subroutine coif f ts does not use the value of any parameter that is passed
but can potentially write to array A (which is set to values read from a sensor by colff ts).

2.2.5 Mapping directives

Exploiting task and data parallelism together opens a variety of ways to map a computation onto a parallel
machine. In the Fx model, we characterize mappings in terms of three attributes: clustering, degree of
replication, and node allocation.

A clustering is an assignment of task-subroutines to modules. At run time, each task-subroutine in a
module runs on the same set of nodes, and each module runs on a unique set of nodes. For example,
Figure 4(a)-(c) shows three possible clusterings of FFT-Hist. Figure 4(a) shows the familiar data parallel
mapping where all task-subroutines are assigned to the same module; this corresponds to the schedule in
Figure 3(a). Figure 4(b) shows a purely task parallel mapping where each task-subroutine is assigned to a
different module; this corresponds to the schedule in Figure 3(b). Figure 4(c) shows a mapping that is a
mix of both.

If the data sets in the input sequence of a module are independent, and the module carries no internal
state, then that module can be replicated. Each copy of the module is called a module instance. If the
module is replicated into k instances, then we say that the mapping uses k-way replication, or equivalently,
that the degree of replication for that module is k. Module instances execute the calls to the corresponding
subroutines in a round robin order such that each instance executes only 1/kth of the total number of calls
(except for boundary conditions). For example, Figures 4(d)-(e) show mappings with 2-way replication for
all modules; one replicated instance executes the even-numbered iterations, and the other replicated instance
executes the odd-numbered iterations . In Figure 4(f), the first module is not replicated (i.e., there is only
one instance), and the second module is replicated into 4 instances; this corresponds to the schedule in
Figure 3(c).

Finally, there is an assignment of nodes to module instances. This attribute is approximated graphically
in Figure 4 by the relative sizes of the rectangles. For example, in Figure 4(c), each module instance is
assigned half of the nodes. In Figure 4(f), the single instance of the first module is assigned 24 of the
available 64 nodes, and each instance of the second module is assigned 10 nodes each.

Often the programmer has a good idea of how a computation should be mapped but does not want to deal
with the low level details of the mapping. To allow a programmer to pass this information to the compiler,
we include mapping directives. By their very nature, the effect of such mapping directives is machine specific
(the directives are not). For example, a user may want to indicate that some sets of tasks be mapped to
physically adjacent nodes. The number of nodes that are adjacent depends on the architecture of the target
machine (4 for a 2D-torus, 6 for a 3D-torus, etc.), but in our experience, such machine-specific hints can
improve the performance dramatically. Nevertheless, these directives have no semantic meaning; if ignored
by the compiler, performance may suffer but correctness is maintained.

Clustering

Replicatbn

(a) Data parallel mapping
(no replication)

p**W]HW*

(d) Data parallel mapping
(2-way replication)

HP
wiisjifij:1

(b) Task parallel mapping
(no replication)

(c) Mixed mapping
(no replication)

tuna

(e) Task parallel mapping
(2-way replication)

(f) Mixed mapping
(4-way replication)

Figure 4: Combinations of task and data parallel mappings.

Fx includes the processor and origin directives to describe the clustering of task-subroutines into
modules, the allocation of nodes to modules, and the replication of modules. The processor directive states
how many nodes should be assigned to a task-subroutine. The origin directive states the location(s) of
the task-subroutine in the parallel system. In the current implementation, only rectangular subarrays can
be assigned to task-subroutines, and the parallel system is assumed to be organized as a two dimensional
space, with node (0,0) at the top left of the system. Hence processor and origin directives contain pairs of
numbers referring to the size and location of a rectangular subarray of nodes, respectively. For example, to
map FFT-Hist as shown in Figure 4(f) onto an 8 x 8 array of nodes, we use the following mapping directives:

c$ begin parallel
do i = l,a

call colifts(A)
c$ output (A)
c$ processor (8,3)
c$ origin (0,0)

call rovxxtsU)
c$ input (A), output (A)
c$ processor (2,5)
c$ origin (0,3), (2,3), (4,3),

call hist(A)
(6,3)

c$ input (A)
c$ processor (2,5)
c$ origin (0,3), (2,3), (4,3),

enddo
(6,3)

c$ end parallel

These directives instruct the compiler that colxfts should be allocated an 8 x 3 module of nodes, with the
top-left corner of the module at node (0,0). Task-subroutines rosifts and hist are to be placed on the
same 2x5 module, replicated 4 ways, with the top-left corner of the 4 module instances starting at nodes
(0,3), (2,3), (4,3), and (6,3), respectively. The replicated instances of the rotrffts-hist module are called
in round-robin order. So, instance 0 gets the first data set, instance 1 gets the second data set, and so on.

The current implementation of Fx only supports homogeneous parallel system, for which the size and
location of a subarray is sufficient information to map a task-subroutine. In a heterogeneous environment
with different machines, additional information is needed.

2.3 Compiling task parallel programs
The compiler must perform a set of steps to support task parallelism: (1) Identify the task structure of
the program and determine the placement of task-subroutines. This step determines the mapping of the
application on the parallel system. (2) Determine the communication links between the task-subroutines
and identify the data to be transferred. (3) Generate and schedule inter-task communication. (4) Generate
a final program along with variable declarations to manage the shared address space.

The different tasks in the program are obtained by examining the statements in a parallel section. The
placement of the tasks in the parallel system is obtained from the mapping directives, i.e. the processor and
origin directives. The dependences between tasks are identified by data flow analysis over array sections
using the information in the input and output directives supplied by the user. The task dependence edges are
also the communication edges, and the actual communication is generated using the task-communication
graph and the data distribution information that is present in the form of alignment and distribution
directives inside task-subroutines. Declaration and distribution of array variables, and node assignments
determine the amount of memory allocated for array variables on individual nodes.

2.3.1 Mapping criterion

The mapping of the tasks of a parallel program to the processor nodes is an important determinant of
performance. The directives that control mapping may be provided by the user, or generated by an automatic
mapping tool. The situation is analogous to the data layout directives in HPF. The mapping process is
discussed in more detail in [26], and an automatic mapping tool is discussed in [25]. Here we briefly discuss
the basic mapping criterion, which is the same whether the mapping is done by hand or by an automatic
tool.

In our experience, the following three dimensions have the biggest impact on the quality of a mapping:

Scalability: When a computation or a subroutine is not scalable, better node efficiency is achieved by using
a smaller number of nodes for each computation instance.

Memory requirements: The minimum number of nodes needed for a computation is bounded by memory
requirements. This is an important consideration that is often overlooked in the mapping literature.

Inter-task communication: The nature and cost of inter-task communication depends on the mapping.
If two tasks are placed in the same module, the cost of the inter-task communication is different than
if they are placed in different modules.

The major steps in generating a mapping are:(l) Cluster task-subroutines into modules. (2) Allocate
nodes to modules. (3) Replicate modules into module instances.

2.3.2 Example

We qualitatively discuss the mapping of the FFT-Hist example program. Task-subroutines rowffts and
hist are clustered into the same module to save the cost of data transfer between them. The data transfer
cost is zero if these two task-subroutines are included in the same module and hence execute on the same
nodes. The cost of communication between col«ts and rovxfts does not decrease if they are mapped to
the same module, since a matrix transpose is required even if they are mapped to the same set of nodes. So
these two task-subroutines are kept in separate modules to reduce the memory requirements.

Nodes are then allocated to the two modules in proportion to the computation load. The row*ft-hist
module is allocated 40 processors and then replicated to 4 instances (at least 10 processors are needed for
each instance due to memory requirements) . Each instance runs on 10 nodes, rather than having a single
instance running on 40 nodes. This is an important step since the hist routine does not scale well, and its

performance improves only slightly from 10 to 40 nodes. Replication is not applied to the col«ts module,
since it scales nearly linearly. Figure 5 shows the steps and the resulting mapping for a 64-node parallel
system. The quantitative measurements used by our automatic tool to arrive at this mapping is discussed
in [25].

colffts rowffls hist

Clustering

Replication

Final mapping onto 64 nodes

DDD
DDD
DDD
DDD
DDD
DDD
DDD
DDD

DDDDD
rowtttt&hW

DDDDD
DDDDD

rowfltt&htat

DDDDD
DDDDD

rowftts&hkt

DDDDD
DDDDD

rowfnt&hW

DDDDD
Figure 5: Mapping steps and the final mapping of the example
program

In summary, a combined task and data parallel mapping is often needed to achieve the best performance,
and the choice is based on measurable program properties. For example, Figure 6 shows the performance
of the mapping in Figure 5 on a 64-node iWarp system, relative to a direct data parallel mapping. The
mapping in Figure 5, which consists of a mix of task and data parallelism, outperforms the straightforward
data parallel mapping by a factor of two.

Program Mapping Speedup over data parallel mapping
Data Parallel (Fig. 4(a)) 1
Task Parallel (Fig. 4(b)) 1.43
Mixed Mapping (Fig. 5) 1.95

Figure 6: Speedup for different mappings of the FFT-Hist ex-
ample

3 Experience with Fx applications

We used Fx for problems in a variety of domains: medical image processing, synthetic aperture radar,
narrowband tracking radar, computer vision, and air quality modelling [13]. This section describes our
experience with a subset of these applications and kernels: 2D fast Fourier transform, narrowband tracking
radar, multibaseline stereo imaging [13, 26] and synthetic aperture radar [20]. The programs are compiled
for a 64-node iWarp system [3, 4]. Since the details of the target machine are not relevant in this context, we

10

present the results as speedup over a purely data parallel implementation. In all the examples, significant
performance benefits are realized by compiling the programs with a mix of task and data parallelism.

3.1 Fast Fourier transform
The FFT-Hist example from the previous sections consists of a 2D FFT (task-subroutines coif Its and
row«ts), followed by a histogram. The 2D FFT is an interesting application in its own right; even though
it shares much of the same code with the FFT-Hist example, it scales differently, and thus its best mapping
is quite different.

Figure 7 shows the speedups for different mappings of the FFT program relative to a simple data parallel
mapping, for different problem sizes. The numbers are relative only to numbers in the same row and

size
one module two modules

pure data
parallel

2-way
replication

4-way
replication

no
replication

2-way
replication

4-way
replication

64x64
128 x 128
256 x 256

1
1
1

1.88
1.15
1.09

2.61
1.28
1.16

2.08
.91
.79

2.65
1.12
.94

3.04
1.29
1.08

Figure 7: Speedup of 2D FFT relative to a data parallel map-
ping.

are not comparable across rows. Notice that the optimal clustering depends on the problem size, but a
higher degree of replication always improves performance. For example, for the 128 x 128 2D FFT (a size
frequently encountered) a 4-way replication of two modules, as shown in Figure 8, minimizes execution time.
This mapping differs from the mapping of FFT-Hist in Figure 5.

As the problem size increases, the pure data parallel mapping begins to perform better relative to the
mixed mappings. The reason is due to differences in the scalability of inter-task communication; in our
implementation, communication between task-subroutines in the same module scales better than commu-
nication between task-subroutines in different modules. The crucial point here is that the best mapping
depends on the input size; no single approach works best in all cases.

3.2 Narrowband tracking radar

The narrowband tracking radar benchmark was developed by researchers at MIT Lincoln Labs to measure
the effectiveness of various multicomputers for their radar applications [23]. It is a particularly interesting
benchmark for studying task parallelism because of its hard real-time requirements, and because the size of
the input data set is limited by physical properties of the radar sensor. The amount of available low-level
data parallelism is limited, so additional parallelism must come from higher-level task parallelism.

The radar program inputs data from a single sensor along c = 4 independent channels. Every 5 millisec-
onds, for each channel, the program receives d = 512 complex vectors of length r = 10, one after the other
in the form of an r x d complex matrix 1 (assuming the column major ordering of Fortran). At a high-level,
each input matrix A is processed in the following way: (1) Corner turn the r x d input matrix to form a d x r
matrix. (2) Perform r independent d-point FFTs. (3) Convert the resulting complex dxr matrix to a real
w x r submatrix, w = 40, by replacing each element a + ib in the w x r submatrix with its scaled magnitude
y/a2 + b2/d. (4) Threshold each element ajt of the submatrix using a cutoff that is a function of üJU and
the sum of the submatrix elements. The Fx version of the radar program operating on a stream of m input
data sets has the following form:

c$ begin paraUel
do i = l,m

call get(A)
c$ output: A

11

i Clustering

tfäw^&w&ffb

l_

Figure 8: FFT task graph and mapping

call compute(A.B)
c$ input: i
c$ output: B

enddo
c$ end parallel

The program consists of a parallel section with calls to two task-subroutines inside a loop that iterates m
times. Figure 9 shows the task graph. Task-subroutine get acquires the data from all 4 channels and sends
it to task-subroutine compute, a data parallel routine that performs steps (l)-(4) above. We will assume
for purposes of discussion that the get task-subroutine must run on one node, and that it must be assigned
to the node that is connected to the radar sensor. The data parallelism in the compute task-subroutine is
in the form of a parallel loop where each loop iteration operates on a single column of the corner-turned
data set. Since there are only r = 10 of these columns for each of the 4 channels, the amount of loop-level
parallelism is quite small.

Since the get task-subroutine must run on exactly one node, we can only replicate the compute task-
subroutine if the two task-subroutines are clustered into different modules. The compute task-subroutine
can use at most 10 nodes efficiently, so we want to use up nodes by using replication. A mapping of the
program that uses 4-way replication of the compute task-subroutine is shown in Figure 9.

Figure 10 gives the measured performance of the Fx radar program when compiled with different degrees
of replication. The linear speedups illustrate the value of replication for programs like the radar program
that operate on small data sets.

3.3 Multibaseline stereo

The multibaseline stereo example is based on an algorithm developed at Carnegie Mellon for depth perception
by using more than two cameras [19]. It is an interesting program for studying task parallelism because it
contains significant amounts of both inter-task and intra-task communication [30], and the size of data sets is
fixed. Our implementation is adapted from a previous data parallel implementation written in a specialized
image processing language [29].

12

fcV*W4><*.-4>-V*.'*.'>

Figure 9: Radar task graph and mapping

replication 1-way | 2-way 4-way

speedup 1 2.000 3.996

Figure 10: Speedup of radar for different degrees of replication.

13

Input consists of three mxn images acquired from three horizontally aligned, equally spaced cameras.
One image is the reference image, the other two are match images. For each of 16 disparities, d = 0,..., 15,
the first match image is shifted by d pixels, the second image is shifted by 2d pixels. A difference image is
formed by computing the sum of squared differences between the corresponding pixels of the reference image
and the shifted match images. Next, an error image is formed by replacing each pixel in the difference image
with the sum of the pixels in a surrounding 13 x 13 window. A disparity image is then formed by finding,
for each pixel, the disparity that minimizes error. Finally, the depth of each pixel is displayed as a simple
function of its disparity. The Fx version of the stereo program operating on a stream of s input data sets
has the following form:

c$ begin parallel
do i = l(i

call dgen(R,Ml,M2)
c$ output: R.M1.M2

do d = 0,15
call dill(R,Ml,M2,DIFF,d)

c$ input: R.M1.M2
c$ output: DIFF

call error(DIFF,ERR(:,:,d),d)
c$ input: DIFF
c$ output: ERR(:,: ,d)

enddo
call min(ERR.DISP)

c$ input: ERR
c$ output: DISP

enddo
c$ end parallel

Figure 11 shows the task graph. Task-subroutine dgen acquires three 256 x 240 images from the cameras.
Each of the 16 instances of the dill task-subroutine is a perfectly data parallel routine that converts the
three input images to a difference image. Each instance of the error task-subroutine is a data parallel
routine that sums over a window of pixels in the difference image to produce an error measure for each pixel.
Each image is distributed by rows within each task, so a node needs to exchange rows with its neighbors
before the error image can be produced. The outputs from the error tasks are passed to min, which applies
a mJn-reduction to produce the disparity image, and then displays the corresponding depth image.

A mapping of the stereo program that uses 4-way replication is shown in Figure 11. Figure 12 shows the
measured performance of the Fx stereo program compiled as 1 (i.e. purely data parallel), 2, and 4 replicated
modules. The higher throughput of the 4-way replicated case validates the decision to use replication.
However, while a 4-way replication roughly doubles the throughput, it roughly doubles the latency too.
Depending on the requirements of a particular application of the stereo program, this may or may not be a
reasonable tradeoff. A system striving to minimize latency would potentially arrive at a different mapping.

3.4 Spotlight SAR
Probably the most significant application we implementated was a spotlight SAR code from Sandia National
Laboratories [20]. We compiled the same Fx SAR program for a variety of problem sizes and styles of task
and data parallelism, and identified the performance tradeoffs. The results again suggest that it is important
for compilers to support a mix of task and parallelism, that no single mapping style is best in all cases.

Figure 13 shows the Fx code for a spotlight SAR code. The reform function inputs a sequence of 2D phase
histories and reformats from polar to rectangular coordinates. The fft function performs an inverse 2D FFT
on the reformatted image and outputs the result. Figure 14 shows the speedups vfor different mappings of
the SAR program relative to the simple data parallel mapping in Figure 14(a). For problem sizes that are
small relative to the size of the processor array, a mix of task and data parallelism can boost performance
by 50%. As the problem size increases relative to the size of the processor array, the differences between

14

Figure 11: Stereo task graph and mapping

degree of
replication speedup

1
2
4

1
1.45
1.93

Figure 12: Speedup of stereo for different degrees of replication

15

et begin parallel
do i * 1»images

call refom(l)
c* output (A)

call fft(i)
c* input (A)

enddo
c$ end parallel

reform

Figure 13: SAR example program and task graph

on« module
no replication

64x64: 1

128x128: 1

512x512 1
(a)

one module
2-way replication

1.00

1.03

1.00

(b)

one module
4-way replication

two modules **° modules two modules
no replication 2-way replication 4-way replication

DI
DI
1.26

1.10

1.01

(•)

□ E3 □ a
BI
1.42

1.15

1.02

(f)

Figure 14: Speedups for different mappings and sizes of SAR
on 64 nodes

the various mapping styles largely disappears due to the decreasing fraction of time spent transferring data.
The point is that no mapping style is best in all cases.

4 Comparison with related work

The approach that we have taken towards task parallelism can be summarized by the following key features:

• Task parallelism is integrated with a data parallel compiler, and data parallel subroutines are units for
task parallelism.

• Task parallelism is expressed with high level directives, and communication and task management is
done by the compiler.

Task parallelism that can be expressed in our system is constrained in two significant ways. First,
communication between task-subroutines is permitted only at procedure boundaries (through procedure
arguments). Since we are using data parallelism with its own compiler-generated communication inside sub-
routines, there is some justification that explicit communication between task-subroutines is less important.
This constraint considerably simplifies the programming model and the compiler. Second, the mapping of
tasks to nodes is fixed at compile time. This makes it easier to generate efficient parallel programs with low
execution overheads, but makes the method not suitable for dynamic computations.

Coordination languages like Linda [5, 6] and Fortran M [14] provide a communication interface to build
task parallel programs, with facilities for more general inter-task communication. In contrast, Fx task
parallelism is more restricted but is closely integrated with a data parallel compiler, and communication is
exclusively generated by the compiler.

Ifi

Jade [21] and PYRROS [32] capture all parallelism as fine grain task parallelism; these systems create and
schedule tasks dynamically. A new language is developed in Jade, and fine grain directives are required in
PYRROS. While these systems can support a richer variety of parallelism, particularly dynamic programs,
writing programs is more cumbersome because a fine grain control of parallelism by the programmer is
required, or because they do not use a standard data parallel layer like RTF, which we found invaluable for
ease of development and user acceptance.

HPF [16] can be used to develop task parallel MIMD programs using INDEPENDENT parallel loops, but
no support is available for expressing data transfers between tasks. Chapman et. al. [8] propose a similiar,
but more general and dynamic approach to task parallelism than ours. Fx emphasizes simplicity to obtain
efficient code through compilation; it will be interesting to compare the performance once results from an
implementation are reported.

The node mapping problem described in this report has been described in more detail in related publica-
tions [25, 26]. This problem is quite different from the many partitioning problems addressed in the literature
(e.g., [22, 2, 11]) due to one or more of the following reasons: (1) Task-subroutines are to be mapped to
groups of nodes, not individual nodes. (2) The computation and communication costs are functions of the
number of nodes, not constants. (3) The objective is to maximize throughput for a sequence of inputs, not
to minimize execution time of a fixed set of tasks.

5 Conclusions
Both task and data parallelism are important for practical applications and are necessary to make the best use
of a parallel system. We demonstrate that a set of simple directives is sufficient to capture task parallelism for
representative applications in computer vision, signal processing, and multidisciplinary scientific computing.
Without task parallelism, it may be impossible to utilize a large number of nodes efficiently. Applications
in these domains often exhibit only a limited amount of data parallelism due to the fixed size of their input
sets, are subject to real-world latency constraints, or are structured so that individual components scale
differently.

The Fx compiler is a prototype system that integrates both data and task parallelism, and our experience
demonstrates that task parallelism can be supported effectively in an HPF framework. The current design
reflects our desire to obtain a working system that can serve as a basis for further experimentation with the
limited resources available. The Fx compiler represents approximately a 10 person-year effort (this includes
dealing with task as well as data parallelism). The design contains some limitations: task parallelism is
subject to several constraints, and the programmer has limited control over execution and communication.
However the design and compiler have proven adequate for interesting applications.

We take the approach that the user provides a high level specification of task parallelism via directives,
and the compiler manages the execution of tasks as well as communication between them. This extends
one of the attractions of HPF in that it frees the user from dealing with the details of communication
in the parallel program. Furthermore, this approach provides the compiler opportunities for optimizing
communication and mapping of the program. Our prototype demonstrates the benefits of task parallelism;
programs with both styles of parallelism exhibit improved performance over data or task parallelism alone.
Fx presents a simple approach to task parallelism that considerably enhances the power of a data parallel
language like HPF.

References
[1] Gagan Agrawal, Alan Sussman, and Joel Saltz. An integrated runtime and compile-time approach for

parallelizing structured and block structured applications. Technical Report CS-TR-3143 and UMIACS-
TR-93-94, University of Maryland, Department of Computer Science and UMIACS, October 1993.

[2] S. H. Bokhari. Partitioning problems in parallel, pipelined and distributed computing. IEEE Transac-
tions on Computers, 37(l):48-57, January 1988.

17

[3] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam, B. Moore, C. Peterson,
J. Pieper, L. Rankin, P. S. Tseng, J. Sutton, J. Urbanski, and J. Webb. iWarp: An integrated solution
to high-speed parallel computing. In Supercomputing '88, pages 330-339, November 1988.

[4] S. Borkar, R. Cohn, G. Cox, T. Gross, H. T. Kung, M. Lam, M. Levine, B. Moore, W. Moore, C. Peter-
son, J. Susman, J. Sutton, J. Urbanski, and J. Webb. Supporting systolic and memory communication
in iWarp. In Proceedings of the 17th Annual International Symposium on Computer Architecture, pages
70-81, Seattle, WA, May 1990.

[5] N. Carriero and D. Gelernter. Applications experience with Linda. In Proceedings of the ACM SIGPLAN
Symposium on Parallel Programming: Experience with Applications, Languages and Systems, pages
173-187, New Haven, CT, July 1988.

[6] N. Carriero and D. Gelernter. Data parallelism and Linda. In Proc. 5th Intl. Workshop, Languages
and Compilers for Parallel Computing, volume 757 of Lecture Notes in Computer Science, chapter 10,
pages 145-159. Springer, 1992.

[7] M. Chandy, I. Foster, K. Kennedy, C. Koelbel, and C. Tseng. Integrated support for task and data
parallelism. International Journal of Supercomputer Applications, 8(2):80-98, 1994.

[8] B. Chapman, P. Mehrotra, J. Van Rosendale, and H. Zima. A software architecture for multidisciplinary
applications: Integrating task and data parallelism. Technical Report 94-18, ICASE, NASA Langley
Research Center, Hampton, VA, March 1994.

[9] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific Programming,
l(l):31-50, August 1992.

[10] A. Cheung and A. Reeves. Function-parallel computation in a data-parallel environment. In Proceedings
of the 1998 International Conference on Parallel Processing, pages 21-24, St. Charles, IL, August 1993.

[11] A. Choudhary, B. Nahari, D. Nicol, and R. Simha. Optimal processor assignment for a class of pipelined
computations. IEEE Transactions on Parallel and Distributed Systems, 5(4):439-444, 1994.

[12] M. Crovella and T. LeBlanc. The search for lost cycles: A new approach to parallel program performance
evaluation. Technical Report 479, Computer Science Department, University of Rochester, December
1993.

[13] P. Dinda, T. Gross, D. O'Hallaron, E. Segall, J. Stichnoth, J. Subhlok, J. Webb, and B. Yang. The CMU
task parallel program suite. Technical Report CMU-CS-94-131, School of Computer Science, Carnegie
Mellon University, March 1994.

[14] I. Foster and K. Chandy. Fortran M: A language for modular parallel programming. Technical Report
MCS-P327-0992, Argonne National Laboratory, June 1992.

[15] T. Gross, D. O'Hallaron, and J. Subhlok. Task parallelism in a High Performance Fortran framework.
IEEE Parallel & Distributed Technology, 2(3):16-26, 1994.

[16] High Performance Fortran Forum. High Performance Fortran language specification, version 1.0. Tech-
nical Report CRPC-TR92225, Center for Research on Parallel Computation, Rice University, May
1993.

[17] G. McRae, W. Goodin, and J. Seinfeld. Development of a second-generation mathematical model for
urban air pollution - 1. Model formulation. Atmospheric Environment, 16(4):679-696, 1982.

[18] G. McRae, A. Russell, and R. Harley. CIT Photochemical Airshed Model - Systems Manual. Carnegie
Mellon University, Pittsburgh, PA, and California Institute of Technology, Pasadena, CA, February
1992.

[19] M. Okutomi and T. Kanade. A multiple-baseline stereo. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(4):353-363, 1993.

18

[20] S. Plimpton, Gary Mastin, and Dennis Ghiglia. Synthetic aperture radar image processing on parallel
supercomputers. In Proceedings of Supercomputing '91, pages 446-452, Albuquerque, NM, November
1991.

[21] M. Rinard, D. Scales, and M. Lam. Jade: A high-level machine-independent language for parallel
programming. IEEE Computer, 26(6):28-38, June 1993.

[22] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. The MIT Press,
Cambridge, MA, 1989.

[23] G. Shaw, R. Gabel, D. Martinez, A. Rocco, S. Pohlig, A. Gerber, J. Noonan, and K. Teitelbaum.
Multiprocessors for radar signal processing. Technical Report 961, MIT Lincoln Laboratory, November
1992.

[24] J. Stichnoth, D. O'Hallaron, and T. Gross. Generating communication for array statements: Design,
implementation, and evaluation. Journal of Parallel and Distributed Computing, 21(1):150-159, April
1994.

[25] J. Subhlok. Automatic mapping of task and data parallel programs for efficient execution on multicom-
puters. Technical Report CMU-CS-93-212, School of Computer Science, Carnegie Mellon University,
November 1993.

[26] J. Subhlok, D. O'Hallaron, T. Gross, P. Dinda, and J. Webb. Communication and memory requirements
as the basis for mapping task and data parallel programs. In Proc. Supercomputing '94, pages 330-339,
Washington, DC, November 1994.

[27] J. Subhlok, J. Stichnoth, D. O'Hallaron, and T. Gross. Exploiting task and data parallelism on a
multicomputer. In Proc. of the ACM Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 13-22, San Diego, CA, May 1993.

[28] C. Tseng, S. Hiranandani, and K. Kennedy. Preliminary experiences with the Fortran D compiler. In
Proceedings of Supercomputing '93, pages 338-350, Portland, OR, November 1993.

[29] J. Webb. Implementation and performance of fast parallel multi-baseline stereo vision. In Computer
Architectures for Machine Perception, pages 232-240, December 1993.

[30] J. Webb. Latency and bandwidth consideration in parallel robotics image processing. In Supercomputing
'93, pages 230-239, November 1993.

[31] B. Yang, J. Webb, J. Stichnoth, D. O'Hallaron, and T. Gross. Do&Merge: Integrating parallel loops
and reductions. In Proc. Sixth Workshop on Languages and Compilers for Parallel Computing, volume
768 of Lecture Notes in Computer Science, pages 169-183, Portland, OR, August 1993. Springer Verlag.

[32] T. Yang and A. Gerasoulis. Pyrros: Static task scheduling and code generation for message passing
multiprocessors. In Proceedings of the 1992 International Conference on Supercomputing, pages 122-129,
Washington, D.C., July 1992.

19

